
AI for learning tasks 
/ movements

[1] Example manipulation skills including inserting, stacking, opening, 
pushing, cutting, screwing, pouring, and writing.

Object Representations

Transition Models

Skill Policies

Hierarchical Task Structures



[1]



Object and 
Environment Representations

Object Representations Passive 
and Interactive Perception

Learning Object Properties Feature Learning and Selection



Object Representations

Point Level

Part Level

Object Level

[6]



Learning Object Properties

Shape

Pose

Material

Physical 
Constraints

Dynamic 
Properties

[5]

[23]



Passive and Interactive Perception

Passive:

• Using camera to observe the 
environment

• Moving a camera to a better 
vantage point

• Observe human performing an 
action

Interactive:

• Push a box to obtain its properties
• Haptic, tactile, vision, and 

audio sensors

Lots of observation in short time
Low effort

More specific details

Supervisory signal for passive perception



Model Representations Uncertainty

Self-Supervision and Exploration Transfer and Reuse

Transition Models



Model Representations

Continuous Models

Discrete Models

Hybrid Models

Deterministic Function:

Stochastic Distribution:

[1]



Uncertainty

[20]



Self-Supervision and Exploration

Random Sampling

Grid Sampling

Active Sampling

Intrinsic Motivation



Transfer and Reuse

Conditions for Model Reuse:

• Compatibility Required: Same state, 
action, and context spaces.

• Mapping Necessity: If spaces differ, a 
mapping is required to align them.

Challenges in Model Transfer:

• Covariate Shift: Variability in input 
data distribution between tasks.

• Dataset Shift: Variability in both 
input and output data distributions. [8]



Skill Policies

Action Spaces Imitation Learning

Policy Structures Skill Transfer

Reinforcement Learning Safety and Performance



What are Skill Policies?

• Goal: aquire skill controller
• Common skill controller representation:

State-action pairs mapped to probabilities

Let's see how to implement skill policies!



Action Spaces
Skill Policies:



Action spaces

When implementing Skill Policy, you need to select an Action Space (a set of 
valid robot actions)

An intermediary controller is often placed between the policy output and 
actuators (actuators can be, for example, motors)

Intermediary controller translates the Action into specific signals for the 
actuators

This is necessary for complexity reduction and stability.



Reinforcement learning
Skill Policies:



What is 
Reinforcement 
Learning?

Subfield of ML where an agent 
(robot) learns to make 
decisions by performing 
actions in an environment to 
maximize cumulative reward.



• Teacher Policy:

• Has access to all domain parameters

• Adapt behaviors based on the specific 
dynamics of each simulated scenario

• Student Policy:

• No direct access to domain parameters

• Learns by mimicking the teacher's actions

• Uses historical sensory data to infer the 
necessary parameters for decision-
making

Student-teacher training[2]



Asynchronous Training

• The speed of learning in 
asynchronous training depends 
on the ratio of data collection 
speed (by the collectors) to the 
training speed (by the trainer).

• Multiple robots performing tasks 
can send back a variety of 
situational data to a central model 
for faster learning and adaptation.

[3]



Curriculum Learning

Train the model with a 
sequence of examples 
of increasing difficulty

Automated curricula 
generation using 

GANs

[2]



Curiosity-Driven Learning

Mechanisms to Guide Exploration:

Expert Demonstrations Requires predominantly hand-crafted 
demonstrations

Curriculum Learning Generation and efficient scheduling of 
intermediate tasks are still considered unsolved

Intrinsic Motivation (Curiosity) Learn without external rewards for the pure sake 
of knowledge gain.



How to incorporate curiosity?
1. Surprise-Based Curiosity

• Approach: Model that predicts the environment's forward dynamics. The intrinsic reward is then based on the 
Euclidean distance between the predicted next state and the observed transition. 

2. State Embedding Predictions

• Approach: Rather than predicting the complete world state directly, predict a lower-dimensional embedding of 
the state. 

3. Learning Progress and Count-Based Methods

• Learning Progress: Intrinsic rewards are given for actions that lead to improvements in the agent's understanding 
or capability within particular areas of the state space.

• Count-Based Exploration: Implements a straightforward count of visits to each state, with a preference for 
states that have been visited less frequently. 

[7], [9]



A curiosity-driven sparse reward RL approach for 
learning end-to-end manipulation tasks without 
task-specific engineering

The notion of curiosity states as guiding 
mechanisms, allowing to focus curiosity on non-
directly observable states

[9]





Imitation learning
Skill Policies:



What 
is imitation learning?

Subfield of ML where an agent 
(robot) learns to perform tasks by 
mimicking human 
demonstrations

[19]



Why imitation learning?

bypass time-consuming exploration 
that would be required in a 

reinforcement learning setting

communicate user preferences for 
how a task ought to be done

describe concepts, such as a good 
tennis swing, that may be difficult to 
specify formally or programmatically 



Types of Imitation Learning [1]

Behavior Cloning Direct Policy Learning Inverse Reinforcement 
Learning



Behavior Cloning

Behavioral Cloning is Supervised Learning

1. Collect demonstration data (state-action pairs)

2. Use state-action pairs as training data for supervised learning

3. Learn by minimizing the loss function



Behavior Cloning demo



Direct Policy 
Learning

• Improved version of behavior 
cloning

• Human expert needed during 
iterative training process

• Each training iteration, human 
corrects robot behavior

• New state-action pairs are used in 
the next training iteration







Inverse Reinforcement Learning

Attempt to infer the underlying reward function that the demonstrator was trying 
to optimize

1. Collect demonstrations of an expert performing a task.

2. Infer the underlying reward function that the expert is optimizing

3. Use reinforcement learning techniques to learn a policy that maximizes the 
inferred reward function.



Maximum Entropy

INITIALIZE REWARD 
WEIGHTS

COMPUTE POLICY COMPUTE STATE 
VISITATION 

FREQUENCIES

UPDATE REWARD 
WEIGHTS

REPEAT



Skill Transfer
Skill Policies:



Parameterized 
Skills [2]

• In certain tasks, only some aspects 
of the context change, while other 
properties remain unchanged

• Manifold learning modulates policy 
parameters based on the changing 
task parameter

[17]



Metalearning [3]
• "Learning to learn"

• Model Agnostic Metalearning (MAML)
o Given a sequence of tasks, the 

parameters of a given model are 
trained such that few iterations of 
gradient descent with few training 
data from a new task will lead to good 
generalization performance on that 
task. MAML "trains the model to be 
easy to fine-tune." [18]



Domain Adaptation

• Used when two tasks are the same 
at a high level but differ in low-
level details

• Example: sim2real task

• Popular method: Domain Randomiz
ation

[20]



Charecterizing skills
by Preconditions and Effects

Pre- and Postconditions as 
Propositions and Predicates

Learning Pre- and Postcondition 
Groundings

Skill Monitoring and Outcome 
Detection

Predicates and Skill Synthesis



What are Pre- and Post- conditions?

• Precondition: A set of 
conditions that must be met 
for a robot to successfully 
execute a particular skill.

• Postcondition: A set of 
conditions describing the 
state of the environment 
after a robot has executed a 
particular skill.



AtTableB
GraspedKnifeAwRHand

At(TableB)
Grasped(KnifeA, RHand)

How can a robot map its complex environment to 
abstract predicates?

Proposition Predicate

Pre- and Postconditions as Propositions and Predicates



Grounding a Predicate is linking abstract symbols or logical 
expressions to real-world data and conditions.

Distribution 
Representation:

Classifier 
Representation:



1. Learning Goal and 
Error Classifiers

2. Detecting 
Deviations from 
Nominal Sensory 
Values

3. Verifying Predicates

Ways to Monitor Outcomes and Errors



Compositional 
and Hierarchical task 

structures

Compositional 
and Hierarchical tasks

Ways to Segment Trajectories into 
Component Skills

Structure of Robotic Skill Execution

Skill Discovery While Solving Tasks



Instruction 1:
Open the drawer.

Instruction 2:
Put the apple inside 

the drawer while keep it 
open.

Instruction 3:
Release the apple 

and move hand away.

Instruction 4:
Close the drawer.

Complex tasks



A skill library is a set of reusable skills for a robot.

initiation set.

termination condition.

option policy.

Structure of Robotic Skill Execution



How to identify skills?

Identifying Skills:

1. Discovering Skills While Solving Tasks

2. Segmenting Trajectories into Component Skills

Skill similarity Specific Events Language-guided

Task Execution
Event-Based Skill 

Creation Skill Refinement
1 2 3



Policy Similarity:

• Measures skill similarity by fitting 
data to policies and evaluating 
distance in parameter space.

1. Segmentation Based on Skill Similarity

Pre- and Postcondition Similarity:

• Segments skills based on achieving 
goals from different initial 
conditions.

Ways to measure skill similarity



2. Segmentation Based on Specific 
Events

• Salient sensory 
events

• Transitioning 
between modes



Overall framework of 
LAST

(Language-guided Skill 
Learning with 

Temporal Variational 
Inference)

[10]



Language-guided Skill Learning with Temporal 
Variational Inference

[10]



Eureka and DrEureka



[11]



[12]



[12]



Voyager



[13]



Curiosity learning, curriculum learning, skills

[13]
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