
fd

Ivan Smirnov, Vladislav Veselov, Maryana Smirnova, Markus Rampp

Conclusion

Add your information, graphs and images to this section.

Results

Comparative Overview of HPC
Frameworks for CPU/GPU Programming

Frame-

work Primary Model
Target

Hardware
Functional portability*

Performance

Portability
Ecosystem Maturity Use Cases

OpenCL
Cross-platform, kernel-
based, host-device(with

OpenCL C use)

CPU, GPU, FPGA,
DSP

() Was created as cross-
vendor [1]

Varies significantly across
platforms [3], and even in
convenient single-node
cases is 1.3 times slower

than CUDA [2]

Never gained much
traction in the HPC-GPU

space, mostly
due to the lukewarm

support by NVIDIA [22]

Cross-vendor HPC,
embedded systems,
AI/ML and scientific

computing

SYCL Cross-platform, single-
source C++ CPU, GPU

implementations are available
from an increasing number of

vendors, including adding
support for diverse

acceleration API back-ends in
addition to OpenCL: Intel

oneAPI, AdaptiveCpp, triSYCL,
neoSYCL, SimSYCL [4]

It is high on NVIDIA and
Intel GPU, but limited on

CPU [5]

() Growing tooling and
libraries through Intel

oneAPI; still developing
maturity compared to

CUDA [6]

HPC, scientific
computing, AI/ML and

data-parallel tasks

RAJA
Abstraction layer, loop-
level parallelism (multi-

backend)
CPU, GPU

Vendor interactions to
support new hardware from
IBM, NVIDIA, AMD, Intel, and

Cray [7]

It is high on NVIDIA GPU,
but limited on AMD GPU

[8]

() Well-supported within
DOE but slightly less
comprehensive than

Kokkos [9]

Scientific simulations,
multi-backend HPC and
loop management, also
performance-portable

HPC applications at LLNL

Kokkos

Abstraction layer, parallel
execution and memory

management (multi-
backend)

CPU, GPU (NVIDIA,
AMD, Intel)

() Provides backend
switching between OpenMP,
CUDA, and HIP for portability

across vendors [12]

Achieves close-to-native
performance with tuning

[12] [13]

Strong DOE backing,
integrated with major HPC

libraries like Trilinos [14]

HPC simulations,
computational science,

fine-grained
parallelism and

performance-portable C++
applications [13]

Open
ACC

Directive-based, host-
device (focused on GPU

offloading)

NVIDIA and AMD
GPUs

() Supports multi-vendor
systems but favors NVIDIA
GPUs due to more mature

implementations

() Performance depends
heavily on compiler quality
and vendor support [10], [11]

() Limited tools and
libraries, mostly focused on

legacy projects [11]

Climate modeling, GPU-
accelerated legacy

applications [10]

OpenMP
Directive-based, shared

memory (with GPU
offloading support)

CPU, GPU Vendor-neutral [17], [18] Tuning required for GPUs
[19], [8]

Robust tools, broad
adoption, and active
vendor/community

support [17]

Shared-memory HPC,
engineering simulations,

hybrid AI/ML [20]

CUDA Hardware-specific, kernel-
based, host-device NVIDIA GPUs Only NVIDIA hardware [15]

Performance portability
across vendors is non-

existent, but high within
NVIDIA GPUs [15], [16]

Extensive libraries (cuBLAS,
cuDNN), industry-standard

tools (Nsight), strong NVIDIA
support [16]

GPU-accelerated AI/ML,
scientific simulations,

rendering[16]

HIP
Hardware-specific,

kernel-based, host-device
(CUDA-like)

AMD GPUs
Portable for AMD and

convertible CUDA
applications with HIPIFY [21]

Optimized for AMD,
tuning required for other

vendors [8], [21]

AMD-focused tools and
libraries, still maturing

AMD-targeted HPC,
AI/ML and engineering

simulations

Introduction Results & Discussion

This work reveals the following key observations regarding GPU-
focused programming models and complementary CPU-based
paradigms:

• Hardware-Specific Approaches (for example, CUDA for NVIDIA,
HIP for AMD, and oneAPI for Intel) typically achieve excellent
performance on their target architectures but may increase
maintenance complexity when porting to alternative hardware.

• Directive-Based Methods (for example, OpenMP and OpenACC)
offer convenient multi-vendor support, but performance
optimization for each backend may lag behind native solutions.

• Abstraction Layers (for example, Kokkos and RAJA) provide single-
source development for multiple platforms, helping manage code
complexity. Nonetheless, consistent performance across different
architectures depends on the maturity of underlying compilers
and runtimes.

Selecting an optimal framework involves balancing immediate
performance needs against longer-term sustainability. Although
CUDA remains dominant in many NVIDIA-based environments,
advanced solutions from AMD, Intel, and high-level abstractions like
Kokkos continue to expand the possibilities for portable HPC
development. Future studies could further explore the role of
emerging frameworks in large-scale applications and evaluate their
performance across a wider range of accelerators. This poster
supports HPC researchers and developers in navigating this
complex landscape by highlighting key criteria for achieving both
functional and performance portability.

This evaluation systematically analyzes eight prominent parallel
programming frameworks in HPC: OpenMP, OpenACC, CUDA, RAJA,
Kokkos, HIP, SYCL, and OpenCL. The analysis is based on established
criteria to ensure consistency and scientific rigor.

Evaluation Criteria
• Primary Model — Frameworks are classified by their parallelization

approach (e.g., shared memory, host-device, or abstraction-based).
• Target Hardware — Compatibility with CPUs, GPUs, FPGAs, and

hybrid systems is assessed.
• Functional Portability — The ability to execute code across vendor

platforms with minimal modification is evaluated.
• Performance Portability — The capability to maintain efficient

performance across diverse hardware with varying levels of tuning
is analyzed.

• Ecosystem Maturity — Tool availability, community activity, and
quality of documentation are considered.

• Use Cases — Frameworks are examined for their applicability to
specific HPC domains such as scientific simulations and AI/ML.

Evaluation Approach
Functional Portability: Measures how easily code runs across
platforms.
• High (green): Supports 3+ vendors with minimal code changes.
• Medium (yellow): Supports 2 vendors, moderate adaptations

required.
• Low (red): Vendor-specific, significant rewrites needed.

Performance Portability: Assesses how consistently frameworks
achieve high performance.
• High (green): Strong performance across CPUs and GPUs with

little tuning.
• Medium (yellow): Good performance on one platform, acceptable

on others with moderate tuning.
• Low (red): Optimized for one platform only, requiring extensive

reimplementation.

Ecosystem Maturity: Evaluates tools, community support, and
documentation.
• High (green): Comprehensive tools, active community, high-

quality documentation.
• Medium (yellow): Adequate tools, moderate community, sufficient

documentation.
• Low (red): Limited tools, niche adoption, outdated or minimal

documentation.

Method

References
1. Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel programming standard for heterogeneous computing systems. Computational Science and Engineering,

12(3), 66–72.

2. Pennycook, S. J., Hammond, S. D., Wright, S. A., Herdman, J. A., Miller, I., & Jarvis, S. A. (2013). An investigation of the performance portability of OpenCL.

Journal of Parallel and Distributed Computing, 73(11), 1439–1450. https://doi.org/10.1016/j.jpdc.2012.07.005

3. Bertoni, C., Kwack, J., Applencourt, T., Ghadar, Y., Homerding, B., Knight, C., Videau, B., Zheng, H., Morozov, V., & Parker, S. (2020). Performance portability

evaluation of OpenCL benchmarks across Intel and NVIDIA platforms. Argonne National Laboratory. Retrieved from https://www.anl.gov

4. The Khronos Group. (n.d.). SYCL. Retrieved from https://www.khronos.org/sycl/

5. Reguly, I. Z. (2023). Evaluating the performance portability of SYCL across CPUs and GPUs on bandwidth-bound applications. Workshops of the International

Conference on High Performance Computing, Network, Storage, and Analysis (SC-W 2023), Denver, CO, USA, November 12–17, 2023.

6. HPCwire. (2023, February 28). State of SYCL: ECP BoF showcases progress and performance. Retrieved from https://www.hpcwire.com/2023/02/28/state-of-sycl-

ecp-bof-showcases-progress-and-performance/
7. Lawrence Livermore National Laboratory. (n.d.). RAJA Portability Suite: Enabling performance portable CPU and GPU HPC applications. Retrieved from https://computing.llnl.gov/projects/raja-managing-application-

portability-next-generation-platforms

8. Davis, J. H., Sivaraman, P., Minn, I., Parasyris, K., Menon, H., Georgakoudis, G., & Bhatele, A. (2023). An evaluative comparison of performance portability across

GPU programming models. Department of Computer Science, University of Maryland, & Lawrence Livermore National Laboratory.

9. RAJA Documentation. (n.d.). Retrieved from https://raja.readthedocs.io/en/develop/

10.Sabne, A., Sakdhnagool, P., Lee, S., & Vetter, J. S. (2014). Evaluating performance portability of OpenACC. In Languages and Compilers for Parallel Computing (pp.

63–77). Springer.

11.Deakin, T., et al. (2019). Performance portability across diverse computer architectures. 2019 IEEE/ACM International Workshop on Performance, Portability and

Productivity in HPC (P3HPC), Denver, CO, USA, 2019, pp. 1–13. https://doi.org/10.1109/P3HPC49587.2019.00006

Table. Confidence indicators:

- Question mark () — uncertainty due to limited data or conflicting studies

- Hourglass () — information older than 10 years, potential obsolescence

*more on portability [22]:

12. Edwards, H. C., Trott, C. R., & Sunderland, D. (2014). Kokkos: Enabling manycore performance portability through polymorphic memory access patterns. Journal of

Parallel and Distributed Computing, 74(12), 3202–3216.

13. Kokkos Documentation. (n.d.). Available at https://kokkos.org/kokkos-core-wiki/

14. Kokkos Abstract. (2023). Available at https://kokkos.org/about/abstract/

15. NVIDIA Developer. (n.d.). CUDA Toolkit Documentation. Retrieved from https://docs.nvidia.com/cuda/

16. NVIDIA Developer. (n.d.). CUDA Zone. Retrieved from https://developer.nvidia.com/cuda-zone

17. OpenMP. (n.d.). OpenMP (Open Multi-Processing). Retrieved from https://en.wikipedia.org/wiki/OpenMP

18. OpenMP Architecture Review Board. (n.d.). OpenMP Compilers & Tools. Retrieved from https://www.openmp.org/resources/openmp-compilers-tools/

19. Malik, D. (2022). Performance Portability of OpenMP. Technical University of Munich. Retrieved from

https://events.gwdg.de/event/243/contributions/503/attachments/139/174/OpenMP.Pd

20. van Waveren, M. (2020). OpenMP Use Cases. OpenMP ARB & CS GROUP. Retrieved from https://www.openmp.org/wp-content/uploads/OpenMP-Use-Cases-

vanWaveren.pdf

21. AMD. (n.d.). HIP Documentation: Performance Portability for Heterogeneous Systems. Retrieved from https://rocm.docs.amd.com/projects/HIP/en/latest/index.html

22. Herten, A. (2023). Many cores, many models: GPU programming model vs. vendor compatibility overview. Proceedings of the P3HPC Workshop, hosted at SC23

(International Conference for High Performance Computing, Networking, Storage, and Analysis). Retrieved from https://doi.org/10.48550/arXiv.2309.05445

Added by us

Modern High-Performance Computing (HPC) relies on a wide range
of hardware, including CPUs, GPUs, and accelerators. While the
Message Passing Interface (MPI) remains the standard for
distributed-memory computing, developers must choose from an
increasing number of node-level programming models, such as
OpenMP, CUDA, HIP, OpenACC, oneAPI (SYCL), Kokkos, and RAJA.
These frameworks vary in their ability to deliver portability,
performance, and ease of use, making it essential to carefully
evaluate their features.

This poster compares these programming models based on key
factors such as functional portability (the ability to run code across
different architectures), performance portability (maintaining
efficiency across platforms), ecosystem maturity (tooling, libraries,
and community support), and use cases. Drawing from published
studies, benchmarks, and real-world applications, we highlight each
framework's strengths, limitations, and trade-offs. This analysis aims
to provide developers and researchers with practical insights to
guide the selection of the best framework for optimizing HPC
workloads on increasingly diverse hardware systems.

https://doi.org/10.1016/j.jpdc.2012.07.005
https://www.anl.gov/
https://www.khronos.org/sycl/
https://www.hpcwire.com/2023/02/28/state-of-sycl-ecp-bof-showcases-progress-and-performance/
https://www.hpcwire.com/2023/02/28/state-of-sycl-ecp-bof-showcases-progress-and-performance/
https://computing.llnl.gov/projects/raja-managing-application-portability-next-generation-platforms
https://computing.llnl.gov/projects/raja-managing-application-portability-next-generation-platforms
https://raja.readthedocs.io/en/develop/
https://kokkos.org/kokkos-core-wiki/
https://kokkos.org/about/abstract/
https://docs.nvidia.com/cuda/
https://developer.nvidia.com/cuda-zone
https://en.wikipedia.org/wiki/OpenMP
https://www.openmp.org/resources/openmp-compilers-tools/
https://events.gwdg.de/event/243/contributions/503/attachments/139/174/OpenMP.Pd
https://www.openmp.org/wp-content/uploads/OpenMP-Use-Cases-vanWaveren.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-Use-Cases-vanWaveren.pdf
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://doi.org/10.48550/arXiv.2309.05445

	Slide 1

