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Results

Comparative Overview of HPC
Frameworks for CPU/GPU Programming

Frame-

work Primary Model
Target 

Hardware
Functional portability*

Performance

Portability
Ecosystem Maturity Use Cases

OpenCL
Cross-platform, kernel-
based, host-device(with

OpenCL C use)

CPU, GPU, FPGA, 
DSP

( ) Was created as cross-
vendor [1]

Varies significantly across
platforms [3], and even in 
convenient single-node
cases is 1.3 times slower 

than CUDA [2]

Never gained much 
traction in the HPC-GPU 

space, mostly
due to the lukewarm 

support by NVIDIA [22]

Cross-vendor HPC, 
embedded systems, 
AI/ML and scientific

computing

SYCL Cross-platform, single-
source C++ CPU, GPU

implementations are available 
from an increasing number of 

vendors, including adding 
support for diverse 

acceleration API back-ends in 
addition to OpenCL: Intel 

oneAPI, AdaptiveCpp, triSYCL, 
neoSYCL, SimSYCL [4]

It is high on NVIDIA and 
Intel GPU, but limited on 

CPU [5]

( ) Growing tooling and 
libraries through Intel 

oneAPI; still developing
maturity compared to

CUDA [6]

HPC, scientific 
computing, AI/ML and 

data-parallel tasks

RAJA
Abstraction layer, loop-
level parallelism (multi-

backend)
CPU, GPU

Vendor interactions to 
support new hardware from 
IBM, NVIDIA, AMD, Intel, and 

Cray [7]

It is high on NVIDIA GPU, 
but limited on AMD GPU 

[8]

( ) Well-supported within 
DOE but slightly less 
comprehensive than 

Kokkos [9]

Scientific simulations, 
multi-backend HPC and 
loop management, also 
performance-portable 

HPC applications at LLNL

Kokkos

Abstraction layer, parallel 
execution and memory 

management (multi-
backend)

CPU, GPU (NVIDIA, 
AMD, Intel)

( ) Provides backend 
switching between OpenMP, 
CUDA, and HIP for portability 

across vendors [12]

Achieves close-to-native 
performance with tuning 

[12] [13]

Strong DOE backing, 
integrated with major HPC 

libraries like Trilinos [14]

HPC simulations, 
computational science, 

fine-grained
parallelism and 

performance-portable C++ 
applications [13]

Open
ACC

Directive-based, host-
device (focused on GPU 

offloading)

NVIDIA and AMD 
GPUs

( ) Supports multi-vendor 
systems but favors NVIDIA 
GPUs due to more mature 

implementations

( ) Performance depends 
heavily on compiler quality 
and vendor support [10], [11]

( ) Limited tools and 
libraries, mostly focused on 

legacy projects [11]

Climate modeling, GPU-
accelerated legacy 

applications [10]

OpenMP
Directive-based, shared

memory (with GPU 
offloading support)

CPU, GPU Vendor-neutral [17], [18] Tuning required for GPUs 
[19], [8]

Robust tools, broad 
adoption, and active 
vendor/community 

support [17]

Shared-memory HPC, 
engineering simulations, 

hybrid AI/ML [20]

CUDA Hardware-specific, kernel-
based, host-device NVIDIA GPUs Only NVIDIA hardware [15]

Performance portability 
across vendors is non-

existent, but high within 
NVIDIA GPUs [15], [16]

Extensive libraries (cuBLAS, 
cuDNN), industry-standard 

tools (Nsight), strong NVIDIA 
support [16]

GPU-accelerated AI/ML, 
scientific simulations, 

rendering[16]

HIP
Hardware-specific, 

kernel-based, host-device
(CUDA-like)

AMD GPUs
Portable for AMD and 

convertible CUDA 
applications with HIPIFY [21]

Optimized for AMD, 
tuning required for other 

vendors [8], [21]

AMD-focused tools and 
libraries, still maturing

AMD-targeted HPC, 
AI/ML and engineering 

simulations

Introduction Results & Discussion

This work reveals the following key observations regarding GPU-
focused programming models and complementary CPU-based 
paradigms:

• Hardware-Specific Approaches (for example, CUDA for NVIDIA, 
HIP for AMD, and oneAPI for Intel) typically achieve excellent 
performance on their target architectures but may increase 
maintenance complexity when porting to alternative hardware.

• Directive-Based Methods (for example, OpenMP and OpenACC) 
offer convenient multi-vendor support, but performance 
optimization for each backend may lag behind native solutions.

• Abstraction Layers (for example, Kokkos and RAJA) provide single-
source development for multiple platforms, helping manage code 
complexity. Nonetheless, consistent performance across different 
architectures depends on the maturity of underlying compilers 
and runtimes.

Selecting an optimal framework involves balancing immediate 
performance needs against longer-term sustainability. Although 
CUDA remains dominant in many NVIDIA-based environments, 
advanced solutions from AMD, Intel, and high-level abstractions like 
Kokkos continue to expand the possibilities for portable HPC 
development. Future studies could further explore the role of 
emerging frameworks in large-scale applications and evaluate their 
performance across a wider range of accelerators. This poster 
supports HPC researchers and developers in navigating this 
complex landscape by highlighting key criteria for achieving both 
functional and performance portability.

This evaluation systematically analyzes eight prominent parallel 
programming frameworks in HPC: OpenMP, OpenACC, CUDA, RAJA, 
Kokkos, HIP, SYCL, and OpenCL. The analysis is based on established 
criteria to ensure consistency and scientific rigor.

Evaluation Criteria
• Primary Model — Frameworks are classified by their parallelization 

approach (e.g., shared memory, host-device, or abstraction-based).
• Target Hardware — Compatibility with CPUs, GPUs, FPGAs, and 

hybrid systems is assessed.
• Functional Portability — The ability to execute code across vendor 

platforms with minimal modification is evaluated.
• Performance Portability — The capability to maintain efficient 

performance across diverse hardware with varying levels of tuning 
is analyzed.

• Ecosystem Maturity — Tool availability, community activity, and 
quality of documentation are considered.

• Use Cases — Frameworks are examined for their applicability to 
specific HPC domains such as scientific simulations and AI/ML.

Evaluation Approach
Functional Portability: Measures how easily code runs across 
platforms.
• High (green): Supports 3+ vendors with minimal code changes.
• Medium (yellow): Supports 2 vendors, moderate adaptations 

required.
• Low (red): Vendor-specific, significant rewrites needed.

Performance Portability: Assesses how consistently frameworks 
achieve high performance.
• High (green): Strong performance across CPUs and GPUs with 

little tuning.
• Medium (yellow): Good performance on one platform, acceptable 

on others with moderate tuning.
• Low (red): Optimized for one platform only, requiring extensive 

reimplementation.

Ecosystem Maturity: Evaluates tools, community support, and 
documentation.
• High (green): Comprehensive tools, active community, high-

quality documentation.
• Medium (yellow): Adequate tools, moderate community, sufficient 

documentation.
• Low (red): Limited tools, niche adoption, outdated or minimal 

documentation.
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Added by us

Modern High-Performance Computing (HPC) relies on a wide range 
of hardware, including CPUs, GPUs, and accelerators. While the 
Message Passing Interface (MPI) remains the standard for 
distributed-memory computing, developers must choose from an 
increasing number of node-level programming models, such as 
OpenMP, CUDA, HIP, OpenACC, oneAPI (SYCL), Kokkos, and RAJA. 
These frameworks vary in their ability to deliver portability, 
performance, and ease of use, making it essential to carefully 
evaluate their features.

This poster compares these programming models based on key 
factors such as functional portability (the ability to run code across 
different architectures), performance portability (maintaining 
efficiency across platforms), ecosystem maturity (tooling, libraries, 
and community support), and use cases. Drawing from published 
studies, benchmarks, and real-world applications, we highlight each 
framework's strengths, limitations, and trade-offs. This analysis aims 
to provide developers and researchers with practical insights to 
guide the selection of the best framework for optimizing HPC 
workloads on increasingly diverse hardware systems.
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