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Abstract

Reinforcement learning (RL) has seen significant
advancements by using neural network architec-
tures. In this study, we systematically investigate
the performance of several neural networks com-
monly employed in RL, including Long Short-
Term Memory (LSTM), Multi-Layer Perceptron
(MLP), Mamba, Transformer, Gated Recurrent
Unit (GRU), and Kolmogorov-Arnold Networks
(KAN). These architectures are evaluated across
a variety of task settings, encompassing continu-
ous control (e.g., MuJoCo environments), discrete
decision-making (e.g., Atari games), and memory-
based tasks (e.g., Minigrid environments). By an-
alyzing their performance in these domains, we
identify key strengths and limitations of each ar-
chitecture and highlight their suitability for spe-
cific types of RL problems. Furthermore, we pro-
vide actionable insights into selecting neural net-
work architectures based on task characteristics
and performance requirements, offering practi-
cal guidance for researchers and practitioners in
designing effective RL systems.

1. Introduction

Reinforcement learning (RL) has emerged as a powerful
paradigm for decision-making tasks, with neural networks
playing a crucial role in enabling agents to learn complex
policies. Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is one of the most widely adopted RL algo-
rithms due to its simplicity, robustness, and strong empirical
performance. However, the choice of neural network archi-
tecture for PPO significantly impacts its effectiveness across
diverse environments and hasn’t been widely explored in
the literature.

In this paper, we systematically evaluate the impact of
various neural network architectures on PPO performance
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across a spectrum of tasks. These tasks include envi-
ronments requiring memory, such as partially observable
Markov decision processes (POMDPs), and environments
focused on continuous control and discrete decision-making.
By analyzing the strengths and weaknesses of architectures
such as LSTM, GRU, Transformer, Mamba (Gu & Dao,
2024), and MLP, we aim to provide actionable insights into
the design of RL systems.

Previous works have explored implementation details of
PPO (Huang et al., 2022), what methods could be used to
improve the agent performance in various environments
(Andrychowicz et al., 2020), and studies like (Pleines et al.,
2024) have demonstrated the efficacy of TransformerXL
in episodic memory tasks. However, these studies often
overlook comparisons with simpler architectures, such as
PPO-LSTM, and emerging architectures, like PPO-Mamba.
Furthermore, existing benchmarks, such as those con-
ducted in Memory Gym (Pleines et al., 2024) and Mini-
Grid (Chevalier-Boisvert et al., 2023), highlight the need
for memory in certain environments but lack comprehensive
comparisons across a broader range of architectures and
tasks.

Our contributions are threefold:

* We benchmark PPO implementations with a variety
of neural network architectures, including traditional
(MLP, LSTM), advanced (Transformer, GRU), and
novel (Mamba) models.

* We evaluate these architectures in memory-intensive
environments such as MiniGrid and Memory Gym, as
well as in continuous and discrete control tasks like
MuJoCo and Atari.

* We analyze the trade-offs between memory require-
ments, computational efficiency, and task performance,
offering practical guidelines for selecting architectures
based on task characteristics.

The rest of this paper is organized as follows: Section 2 pro-
vides an overview of related work. Section 3 describes the
experimental setup, including the environments, architec-
tures, and evaluation metrics. Section 4 presents the results
and discussion, and Section 5 concludes with actionable
insights and future research directions.
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2. Related Work

2.1. Proximal Policy Optimization

PPO (Schulman et al., 2017) is a policy gradient method
designed to balance exploration and exploitation by using a
clipped surrogate objective. It has become a cornerstone in
modern RL research due to its stability and ease of imple-
mentation. Despite its widespread adoption, the impact of
neural network architectures on PPO’s performance remains
underexplored, motivating this study.

2.2. Memory in RL

Many RL tasks, particularly those modeled as POMDPs, re-
quire agents to maintain memory to succeed. Environments
like MiniGrid (Chevalier-Boisvert et al., 2023) and Memory
Gym (Pleines et al., 2024) serve as benchmarks for evalu-
ating memory capabilities. While TransformerXL (Pleines
et al., 2023) and GRU have shown promise in these settings,
simpler architectures like LSTMs and novel architectures
like Mamba have not been extensively compared.

2.3. Novel Architectures in RL

Recent advancements, such as Mamba (Gu & Dao, 2024),
offer linear-time sequence modeling with selective state
spaces, making them suitable for RL tasks requiring long-
term dependencies. However, their performance in RL set-
tings, particularly when integrated with PPO, is yet to be
fully understood.

3. Experimental Setup
3.1. Environments

‘We consider a diverse set of environments to evaluate the
architectures:

e MiniGrid: A collection of modular environments
designed for goal-oriented tasks requiring memory
(Chevalier-Boisvert et al., 2023). For our experiments,
we use the Door-Key environment and the Memory
environment:

— Door-Key: The agent must pick up a key to un-
lock a door and reach the green goal square. This
task involves sparse rewards and requires explo-
ration strategies.

— Memory: The agent starts in a room where it
observes an object, navigates through a narrow
hallway, and chooses between two objects at the
end of the hallway. It must remember the initial
object to succeed.

e Memory Gym: These environments are tailored to
evaluate memory capabilities in RL (Pleines et al.,

2023). We test on the Endless Mystery Path, where
the agent observes only a segment of the environment
at a time. This setting requires the agent to infer its po-
sition and direction by recalling previous observations.
An example includes procedurally generated endless
paths.

* MuJoCo: A physics-based continuous control suite
for benchmarking sample efficiency and stability. We
use the Hopper, HalfCheetah, and Humanoid tasks.

* Atari: Classic discrete decision-making environments
with high-dimensional state spaces. We evaluate on
Breakout and Pong.

Figures illustrating MiniGrid and Memory Gym environ-
ments can be seen below:

Figure 1. Example of MiniGrid environments: Memory.

3.2. Architectures

We integrate the following neural network architectures into
PPO:

* MLP: A simple feedforward network serving as a base-
line.

* LSTM and GRU: Recurrent networks for handling
sequential dependencies.

* Transformer and TransformerXL: Advanced archi-
tectures with attention mechanisms for episodic mem-
ory tasks.

* Mamba: A novel architecture for efficient sequence
modeling (Gu & Dao, 2024).
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Figure 2. Memory Gym environment: Endless Mystery Path. The
agent observes a segment of the environment at a time.

3.3. Metrics

The architectures are evaluated based on:

* Average Return: The cumulative reward achieved by
the agent.

e Sample Efficiency: The amount of experience re-
quired to reach peak performance.

¢ Computational Efficiency: Training time and re-
source usage.

 Stability: Variance in performance across random
seeds.
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